

Cascadable Broadband InGaP MMIC Amplifier DC-14 GHz

AKA-1310D

Description

Akoustis' AKA-1310D cascadable broadband InGaP HBT MMIC amplifier is a low-cost high-performance solution for your general-purpose RF and microwave amplification needs. This 50-ohm gain block is based upon a mature and reliable HBT (Heterojunction Bipolar Transistor) process and utilizes proprietary MMIC design techniques, providing best in class performance for small-signal applications.

The AKA-1310D has a very simple application circuit including external DC decoupling caps which limit the low-frequency response as well as an external dropping resistor that provides excellent performance stability and design flexibility. The AKA-1310D is available in die form.

Features

- Reliable Low-Cost InGaP HBT Design
- Extremely Broadband (optimized for low parasitic reactance)
- Excellent Gain Flatness and High P1dB
- Single Power Supply Operation
- 50 Ω Input/Output Matched

Applications

- Narrowband and Broadband Applications for both Commercial and Military Designs
- Linear & saturated amplifier applications.
- Gain stage or driver amplifiers utilized in many applications such as point to point radio, test equipment, VSAT, and military communication systems.

Ordering Information

Part Number	Description
AKA-1310D	Individual Die

Absolute Maximum Ratings

Parameter	Rating	Units
RF Input Power	+20	dBm
Power Dissipation	366	mW
Device Current	79	mA
Channel Temperture	150	°C
Operating Temperature	-45 to +85	°C
Storage Temperature	-65 to +150	°C
ESD Level (HBM)	Class-1A	

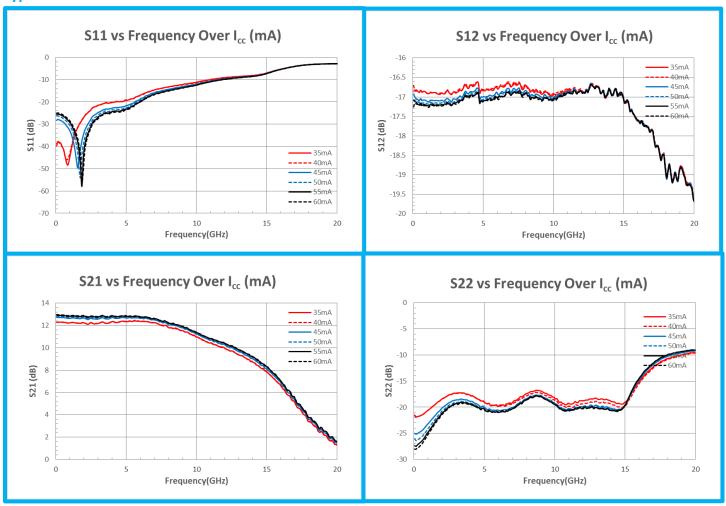
Caution! ESD sensitive device.

Caution! Exceeding any one or a combination of these limits may cause permanent damage.

RoHS Compliant

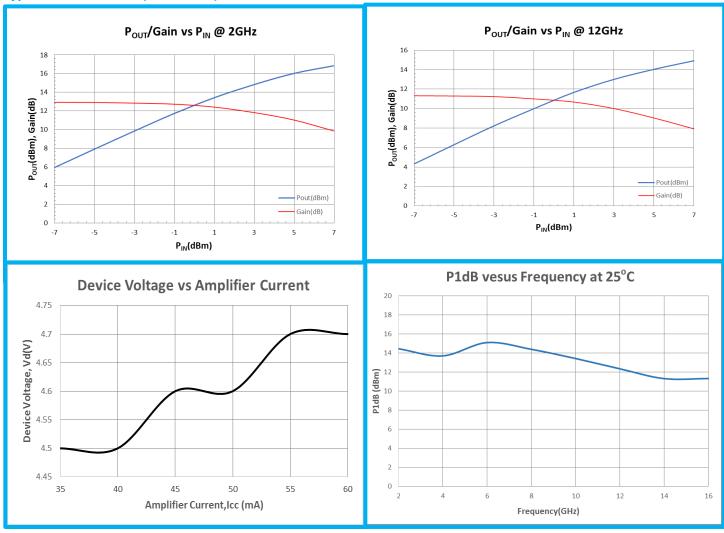
Nominal Operating Parameters

Parameter	Test Conditions	Units	Min.	Тур.	Max.
General Performance		Vd = +4.6V,	Icc=50mA	, Z ₀ =50Ω, Ta=+2	25°C
Small Signal Power Gain, S ₂₁	f=0.1 to 1.0 GHz f=1.0 to 4.0 GHz f=4.0 to 6.0 GHz f=6.0 to 12.0 GHz f=12.0 to 14.0 GHz	dB dB dB dB dB	12.5 12.4 12.4 10.2 9.0	12.9 12.7 12.7 11.7 9.7	
Gain Flatness, G _F	f=0.1 to 12.0 GHz	dB		<u>+</u> 0.8	
Input and Output VSWR	f=0.1 to 4.0 GHz f=4.0 to 6.0 GHz f=6.0 to 12.0 GHz			2.0:1 2.4:1 2.5:1	
Bandwidth, BW	BW3 (3dB)	GHz		12.8	
Output Power @ 1-dB Compression, P1dB	f=2.0 GHz f =6.0 GHz f=12.0 GHz	dBm dBm dBm		14.4 15.1 12.3	
Noise Figure, NF	f=3.0 GHz	dB		5.5	
3 rd Order Intercept, IP3	f=2.0 GHz	dBm		+28	
Reverse Isolation,S ₁₂	f=0.1 to 14.0 GHz	dB		-17	
Device Voltage, Vd		V	4.5	4.6	4.7
Gain Temperature Coefficient, $\partial G_T/\partial T$		dB/°C		-0.0015	

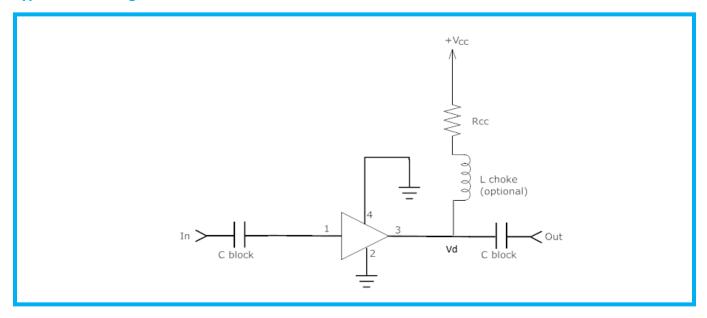

Nominal Operating Parameters

Parameter	Condition	Units	Min.	Тур.	Max.
MTTF versus Temperature at Icc = 50mA					
Case Temperature		°C		85	
Junction Temperature		°C		118	
MTTF		hours		>106	
Termal Resistance					
θ_{JC}	$\theta_{JC} = (J_T - T_{CASE})/(V_D * I_{CC})$	°C/W		179	

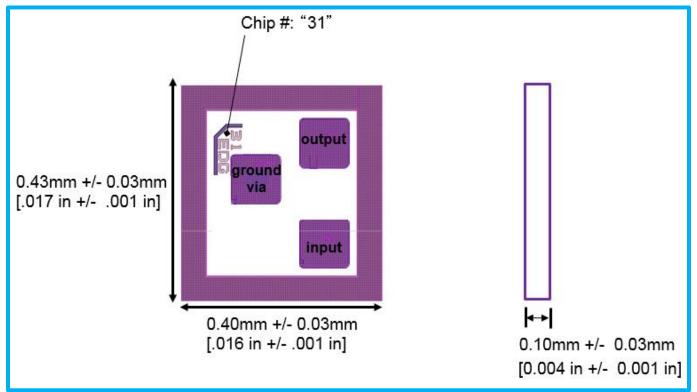
Note: Results shown above were obtained using a micro-x package test fixture.


Typical Performance

Note: The s-parameter gain results shown above were obtained using a micro-x package test fixture.


Typical Performance (continued)

Note: The s-parameter gain results shown above were obtained using a micro-x package test fixture.



Typical Bias Configuration

Recommended Bias Resistor Values @ Icc = 50 mA						
Supply Volatage, Vcc (V)	5	8	10	12	15	20
Bias Resistor, Rcc (Ω)	6	68	108	148	208	308

Die Drawing

Name	Description
RF _{input}	RF input pin. A DC blocking capacitor specified for the frequency of operation should be used.
RFoutput	RF output and bias pin. Biasing is accomplished with an external series resistor and a choke inductor. The resistor value is determined by the following equation: $R = \frac{(Vcc - Vd)}{Icc}$
Gnd	Ground connection to bottom of die through ground via.